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Direct numerical simulations have been carried out for decaying homogeneous
isotropic turbulence in a periodic box. Data for both the velocity and passive scalar
fields are considered, the latter for several values of the Schmidt number Sc. The
focus is on how the three-dimensional spectra E(k, t) and Eθ (k, t) and the spectral
transfer functions T (k, t) and Tθ (k, t) satisfy similarity during decay. The evolution
of these four quantities provides qualified support for the equilibrium similarity
proposal of George (1992a, b). In particular, this proposal provides a reliable means
of calculating the transfer functions, starting with known distributions of E(k, t) and
Eθ (k, t). However, at sufficiently large values of the wavenumber k, normalizations
by Kolmogorov and Batchelor variables yield a better collapse of these quantities
than the use of equilibrium similarity The distributions of Eθ (k, t) and Tθ (k, t) do
not depend on Sc, when the latter is in the range 0.7 � Sc � 7, irrespective of the
normalization adopted. The velocity derivative skewness and mixed velocity–scalar
derivative skewness approach constant values as t increases. This is in disagreement
with equilibrium similarity but in accord with the observed high-wavenumber collapse
of Kolmogorov and Batchelor normalized distributions of E(k, t) and Eθ (k, t).

1. Introduction
Since the seminal paper by Kármán & Howarth (1938) significant attention has

been given to how homogeneous isotropic turbulence (HIT) decays from an initially
prescribed state. Most attempts (e.g. Dryden 1943; Batchelor 1948; Batchelor &
Townsend 1948; Lin 1948; Kármán & Lin 1949; Goldstein 1951) have assumed from
the outset that the same similarity scales apply to E(k) and T (k), the three-dimensional
energy spectrum and energy spectral transfer function respectively, which appear in
the well-known equation

∂E(k, t)

∂t
= T (k, t) − 2νk2E(k, t), (1)

where ν is the kinematic viscosity. George (1992a) showed that the possibility that
the similarity scales for E(k) and T (k) may differ is admitted by (1). This allowed
an important relaxation of the assumptions made previously by Kármán & Howarth
and many subsequent investigators. Later, George (see Wang et al. 2000) made a
formal distinction between the self-preserving hypothesis which relies on single length
and velocity scales and the equilibrium hypothesis which allows the assumption
of self-preservation to be relaxed and permits the appropriate similarity scales to
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be determined from the governing equations. George found that the appropriate
similarity scales admitted by (1) are the turbulent energy 〈q2(t)〉, where

〈q2(t)〉/2 =

∫ ∞

0

E(k, t) dk,

and the Taylor microscale λ ≡ (5〈q2(t)〉/〈ε(t)〉)1/2 where

〈ε(t)〉 ≡ 2ν

∫ ∞

0

k2E(k, t) dk

is the mean energy dissipation rate.
The energy 〈q2(t)〉 can now exhibit a power-law decay behaviour, namely 〈q2(t)〉 ∼

(t − t0)
m with m � −1, regardless of the magnitude of the Taylor microscale Reynolds

number Rλ = ((〈q2〉/3)1/2λ/ν). The attraction of this outcome is that similarity of
decay should be achievable in both experiments and simulations, where m is typically
smaller than −1 and Rλ is usually small and varies either with x or t . This is in
contrast with the self-preserving arymptopic solution with m = −1 and an infinitely
large and time-independent Rλ (e.g. Speziale & Bernard 1992).

George (1992b) also considered the equation governing the evolution of a scalar
field (in his case, temperature) in HIT, namely

∂Eθ (k, t)

∂t
= Tθ (k, t) − 2νθk

2Eθ (k, t), (2)

where Eθ (k, t) and Tθ (k, t) represent the spectrum and spectral transfer function
respectively of the scalar fluctuation θ and νθ is the molecular diffusivity of the
scalar. He found that (2) admits a similarity solution with the possibility of Eθ (k, t)
and Tθ (k, t) having different scales. Like 〈q2(t)〉, the scalar variance 〈θ2(t)〉 can decay
according to a power-law behaviour, i.e. 〈θ 2(t)〉 ∼ (t − tθ0

)n, where n(� −1) and the
virtual origin tθ0

depend on the initial conditions. The appropriate similarity scales
are 〈θ 2〉 and the Corrsin microscale λθ ≡ (3νθ〈θ2〉/〈εθ〉)1/2, where 〈εθ〉 is the mean
scalar dissipation rate of 〈θ 2〉/2; note that

〈θ2(t)〉 =

∫ ∞

0

Eθ (k, t) dk, 〈εθ (t)〉 = νθ

∫ ∞

0

k2 Eθ (k, t) dk.

Hereafter, the combined proposals in George (1992a) and George (1992b) will be
referred to as G92.

Grid turbulence data have been extensively used to test similarity proposals for HIT.
However, their major disadvantage is that they satisfy HIT only approximately, even
when a contraction is added downstream of the grid (e.g. Comte-Bellot & Corrsin
1966). Another related disadvantage is that E(k, t), T (k, t) and the corresponding
scalar counterparts Eθ (k, t) and Tθ (k, t) are not readily determinable from grid
turbulence measurements.† Consequently, assumptions are required, especially for
obtaining the spectral transfer functions (e.g. Uberoi 1963; Van Atta & Chen
1969; Yeh & Van Atta 1973, Helland, Van Atta & Stegen 1977). Direct numerical
simulations (DNS) of decaying turbulence in a periodic box do not suffer from
the previous disadvantages. They may, however, suffer from the box size effect
and the possibility that the smallest flow scales are not resolved adequately (grid
turbulence experiments are not immune from these effects). Although active grids

† This difficulty can be circumvented in physical space by considering the energy structure
equation (Antonia et al. 2003).
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(e.g. Mydlarski & Warhaft 1996, 1999) offer the possibility of achieving values of Rλ

of the order of 1000, this does not seem to have been exploited in the context of
testing the form of similarity during decay. Comparable values of Rλ have recently
been obtained in DNSs (e.g. Gotoh, Fukayama & Nakano 2002; Kaneda et al. 2003),
of HIT but it should be made clear that there are for ‘forced’ turbulence, a much less
demanding situation than considered in this paper.

To date, there has only been limited verification of the equilibrium similarity
hypothesis for the passive scalar field. For the thermal grid turbulence data of
Warhaft & Lumley (1978), the Prandtl number Pr or, more generally, the Schmidt
number Sc (≡ν/νθ ) was about 0.7, temperature being introduced via an electrically
heated mandoline downstream of the grid. In the present paper, we analyse DNS
data obtained for decaying turbulence inside a periodic box at several values of
Sc (0.7, 1, 3, 7, 15) and small Rλ (� 40). The velocity field is the same in each case
and the same scalar spectrum was assumed at t = 0 for each value of Sc. The
main objective is to examine how closely E(k, t), Eθ (k, t), T (k, t), Tθ (k, t) satisfy
equilibrium similarity. However, we also assess the appropriateness of using either
Kolmogorov scaling or Batchelor scaling to normalize these four spectral quantities.
The small values of Rλ allow the high-wavenumber end of the velocity and scalar
spectra (albeit for Sc not much greater than 1) to be resolved more accurately
than has been possible hitherto, thus allowing scaling with Kolmogorov and/or
Batchelor variables to be compared critically against G92. It is widely accepted
that Kolmogorov scaling applies strictly when Rλ is large, the wavenumbers are
high and any effect from large-scale inhomogeneities is small, if not negligible.
The assumptions which underpin the similarity hypotheses of Kolmogorov (1941)
and their later modifications (Kolmogorov 1962) are therefore likely to be satisfied
asymtopically, under homogeneous isotropic conditions. For decaying HIT with
m = −1 (and Rλ → ∞), the equilibrium similarity hypothesis is completely consistent
with similarity based on Kolmogorov variables. There is nonetheless a significant body
of evidence (e.g. Kim & Antonia 1993; Nelkin 1994) which supports this similarity for
sufficiently small scales even when Rλ is small, provided extraneous effects, such as that
due to the mean shear, are small. It is therefore important to compare Kolmogorov
scaling with equilibrium similarity scaling in a flow where Rλ is small and varies with
time. Equally, in the case of the scalar, it is of interest to check the inter-relationship
between equilibrium similarity and a scaling based on Batchelor variables, in the light
of relatively recent DNS data which indicate that, at sufficiently large wavenumbers,
the scalar spectrum, especially when Sc � 1, scales on Batchelor variables (e.g. Kerr
1990; Bogucki, Domaradski & Yeung 1997; Brethouwer & Niewstadt 1999; Orlandi
& Antonia 2002; Yeung, Xu & Sreenivasan; the reader should consult the review of
Antonia & Orlandi 2003a for other references).

2. Numerical details
The present DNS scheme uses an energy conservative finite difference (FD) code

(2403 grid), which is second-order in space and time and is applied to a cubic box of
size 2π. The FD scheme has been described in Orlandi (1999) where results obtained
with this scheme are compared with those obtained with the pseudospectral (PS)
scheme. Satisfactory agreement has been found (Orlandi & Antonia 2002) between
spectra obtained by the two methods but, as will be shown in § 6, the FD approach
avoids the problem of truncation in Fourier space, i.e. that energy that should
be transferred to higher wavenumbers (than those resolved) piles up at the highest
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Figure 1. Dependence on t of the maximum wavenumber of the simulation, normalized by
the Kolmogorov length scale η: —, lower Reynolds number simulation (2403); – – –, higher
Reynolds number simulation (2703).

wavenumber (see Wang et al. 2000). A particular distribution of E(k, t) was prescribed
at t = 0, as in Mansour & Wray (1994), namely

E(k, 0) =
〈q2〉
2A

kσ

kσ+1
p

exp

[
−σ

2

(
k

kp

)2]
,

where kp is the wavenumber at which E(k, 0) is maximum, σ is a parameter (here set
equal to 4) related to the low-wavenumber behaviour and

A ≡
∫ ∞

0

kσ exp(−σk2) dk.

A parametric study of the effect of kp indicated that the magnitude of kp did not
affect the power-law decay rate of the mean energy; increasing kp resulted in different
types of transients and in the decay occurring at an earlier time. de Bruyn Kops &
Riley (1998) suggested that kminL should be less than 0.3 in order to ensure negligible
energy transfer from the lowest wavenumbers (kmin is the lowest wavenumber and L

is the integral length scale, defined in § 6). For the present 2403 simulation, kminL is
0.29 at t = 0, compared with 0.23 for the Wray (1998) simulation. As t increases, L

becomes more difficult to determine accurately since the lowest wavenumbers are less
well resolved. Our main interest is, however, in the behaviour of the small scales. In
this context, figure 1 shows that for the 2403 simulation, kmaxη(kmax is the maximum
wavenumber and η ≡ ν3/4〈ε〉−1/4 is the Kolmogorov microscale) is in the range 1 to
4 when 10 � t � 60, the range of interest here (see § 3). We have also included the
distribution of kmaxη obtained with a 2703 grid. For this simulation, Rλ is about 50%
larger over the range 10 � t � 60 than for the other simulation but the small-scale
resolution is clearly poorer. Unless otherwise indicated, all results presented here are
for the 2403 simulation. As in the simulation of Wray, t has been made dimensionless
using arbitrary velocity (at t = 0,

∫ ∞
0

E(k)dk =3/2) and length (box size 2π) scales.
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Figure 2. Comparison between the directly evaluated distribution of T (k) and that calculated
from the spectral energy equation. DNS data of Wray (1998). �, Direct estimate; �, calculated
indirectly using the spectral energy equation.

For the scalar, the simulation was started with a random phase spectrum, the
prescription for Eθ (k, 0) being similar to that for E(k, 0). In particular, the same
distribution of Eθ (k, 0) was adopted for each of the five chosen values (0.7, 1, 3, 7,
15) for Sc.

The transfer functions T (k, t) and Tθ (k, t) have been computed indirectly using (1)
and (2), i.e.

T (k, t) =
∂E(k, t)

∂t
+ 2ν k2 E(k, t)

and

Tθ (k, t) =
∂Eθ (k, t)

∂t
+ 2νθ k2 Eθ (k, t).

We have verified, however, (figure 2) that the indirect calculation of T (k, t) is in close
agreement with that obtained directly from the triadic interactions in wavenumber
space (see e.g. Domaradzki & Rogallo 1990) using the DNS database of Wray (1998).

3. Power–law decay of 〈q2〉 and 〈θ2〉
Since some time is required before the effect of the starting transients in the

simulation disappears, it is of interest to first examine the time histories of quantities
such as 〈q2(t)〉 and 〈ε(t)〉. These are plotted in log–log coordinates in figure 3. The
mean energy 〈q2(t)〉 remains approximately constant at the start of the simulation
before decreasing relatively sharply for t � 0.5. There is a subsequent slower decrease
which starts at t ≈ 2. This is followed by another transition (t � 10) to a further
power-law decay behaviour up to the end (t = 60) of the simulation. For t � 0.5, 〈ε(t)〉
behaves in a similar manner to 〈q2(t)〉. There is, however, a rise in 〈ε(t)〉 at small t .
Corresponding to the maximum at t = 0.6 is a minimum for both λ2 and Rλ. Note
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Figure 3. Temporal histories of 〈q2〉, 〈ε〉, λ2 and Rλ. – – –, 〈q2〉; - - - , 〈ε〉;
— - —, Rλ; — - -—, λ2.

that Rλ is quite large (≈850) at t = 0. Over the range 10 � t � 60, its magnitude is
small (≈42 at t = 10, ≈ 38 at t = 60).

A requirement of equilibrium similarity is that 〈q2(t)〉 must decay according to a
power-law, namely

〈q2〉
2

= Aq(−t0)
m. (3)

Since

〈ε(t)〉 = −1

2

d〈q2〉
dt

= −mAq(t − t0)
m−1 (4)

it follows that

λ2(t) = −10

m
ν(t − t0). (5)

The magnitude of m can be inferred directly from dλ2(t)/dt . A high-order polynomial
fit was first applied to ln λ2(t) vs ln t . Only the fits are shown in figure 4 since they
are virtually indistinguishable from the original data. For both the 2403 and 2703

simulations, the distributions of dλ2/dt become approximately constant in the range
25 � t � 60. The horizontal lines in figure 4, when used in conjunction with (5), yield
values of m equal to −1.097 and −1.12 for the 2403 and 2703 simulations respectively.
The distribution of λ2/(−10ν/m) is plotted in figure 5 for m = −1.097. Extrapolation
of the linear fit over the range 20 � t � 60 yields a value of 2 for t0.

It follows from (3) and (4) that 〈q2(t)〉1/m and 〈ε(t)〉1/(m−1) should vary linearly with
time. This is indeed what is observed in figure 6 (A ≈ 0.25); the two distributions
follow each other closely since the magnitude of m is close to −1. It follows from (3)
and (5) that

Rλ =

(
20 Aq

−3mν

)1/2

(t − t0)
(m+1)/2. (6)
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Figure 4. Dependence on t of dλ2/dt . Fitted distributions to λ2 are also shown. dλ2/dt:
--- ---, 2403; — -—, 2703. Fits to λ2: —, 2403; - - -, 2703. Magnitudes of horizontal lines are
used for estimating m via (5).
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Figure 5. Temporal evolution of λ2/(−10ν/m) for m= −1.097. Determination of virtual
origin t0. 	, DNS data; —, linear fit over the range t � 20.

The data for Rλ compare favourably with (6) (figure 7) over the range where λ2 grows
linearly with t . Taken collectively, figures 2, 3 and 4 indicate that the behaviours of
〈q2(t)〉, 〈ε(t)〉 and Rλ are fully consistent with equilibrium similarity.

The variations with respect to t of
∫ ∞

0
Eθ (k, t) dk and

∫ ∞
0

k2Eθ (k, t) dk (not shown

here) indicated that, relative to
∫ ∞

0
E(k, t) dk and

∫ ∞
0

k2 E(k, t) dk, the onset of a
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Figure 6. Evolution of 〈q2〉1/m and 〈ε〉1/(m−1) as a function of (t − t0). 	, 〈q2〉1/m;
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Figure 7. Variation of Taylor microscale Reynolds number Rλ with (t − t0). �, DNS;
——–, (6) with Aq = 0.25.

power-law behaviour for the scalar occurs at an increasingly larger value of t as Sc
increases. In particular, the distributions for Sc = 15 suggested that a fully developed
state of decay had not yet been reached at the largest time (t =60). For the other
values of Sc, the extent of the power-law range is narrower than for the velocity field.
Over this range (typically 20 � t � 50), the decay rate is steeper for the scalar than the
velocity field. The magnitude of the exponent n was determined using a procedure
similar to that used for estimating m, i.e. high-order polynomial fits were first applied
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Sc n tθ0
Range of t

0.7 −1.44 −0.14 15–40
1 −1.41 0.08 15–40
3 −1.40 0.68 15–40
7 −1.39 2.36 25–50

Table 1. The magnitudes of n and tθ0
in equation (7) for various Sc values.
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Figure 8. Variation of λ2
θ /(−6ν/n Sc) with (t − tθ0

). �, Sc= 0.07; �, 0.7; �, 1; �, 3; �, 7.
——–, λ2

θ /(−6ν/n Sc) = (t − tθ0
) with n= −1.4.

to ln λ2
θ vs ln t before differentiating λ2

θ . The values of n were obtained by identifying
the most likely plateaus in the distributions of dλ2

θ/dt , commensurate with the linear
behaviour of λ2

θ , namely

λ2
θ = −6

n

ν

Sc
(t − tθ0

), (7)

where tθ0
is the virtual origin for the scalar. The magnitudes of n and tθ0

are shown in
table 1. The table indicates that there is only a relatively small change in n between
Sc = 0.7 and Sc = 7. There is, however, a systematic increase in tθ0

as Sc increases.
The magnitude of n is significantly larger than that of m, implying that the value of
the scalar/velocity time scale ratio R ≡ (〈θ2〉/〈ε〉)/(〈q2〉/〈ε〉) is smaller than 1 (R is
equal to m/n if 〈θ 2(t)〉 and 〈q2(t)〉 exhibit power-law behaviours). This is in contrast to
values of R closer to 1 in earlier simulations (Orlandi & Antonia 2002) with different
initial conditions (the scalar field at Sc= 0.7 and t = 10 was used as the starting point
for simulations at different values of Sc). Note that a significant variation of R has
also been noted in grid turbulence experiments, depending on the choice of initial
conditions (see for example Zhou et al. 2000).

Distributions of λ2
θ/(−6ν/nSc) are plotted in figure 8 vs. (t − tθ0

). As expected,
irrespective of Sc, the data follow the same linear distribution over the range of t
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used to obtain n and tθ0
. The departure from this distribution first occurs for Sc= 0.7

and at increasingly larger values of (t − tθ0
) as Sc increases.

4. Similarity of spectra and transfer functions
For the equilibrium similarity hypothesis, E(k, t) and T (k, t) are given by

E(k, t) = Es(t)Ẽ(k̃) (8)

and

T (k, t) = TS(t)T̃ (k̃), (9)

where Es ≡ u2λ and Ts ≡ νu2/λ are the similarity scales for E and T respectively and
depend only on t , whereas Ẽ and T̃ depend only on k̃ ≡ kλ. Similarly, Eθ (k, t) and
Tθ (k, t) are given by

Eθ (k, t) = Eθs(t)Ẽθ (k̃θ ) (10)

and

Tθ (k, t) = Tθs(t) T̃ θ (k̃θ ), (11)

where Eθs ≡ θ2λθ and Tθs ≡ νθ θ2/λθ are the similarity scales for Eθ and Tθ respectively
and k̃θ ≡ kλθ . The tilde denotes normalization according to G92.

We also consider two other types of normalization. The first uses Kolmogorov
variables, i.e. Uκ ≡ ν1/4〈ε〉1/4 and η, so that E(k, t) = U 2

κ η E∗(k∗) and T (k, t) =
U 3

κ T ∗(k∗) where k∗ ≡ kη, the asterisk denoting normalization by Uκ and/or η. The
second uses Batchelor variables θB ≡ (〈εθ〉/γ )1/2 and ηB ≡ (νθ/γ )1/2 = η Sc−1/2 (γ ≡
(〈ε〉/ν)1/2 is the mean strain rate), so that Eθ (k, t) = θ2

B ηB E†(k†) and Tθ (k, t) = θ2
B γηB

T †(k†), where k† ≡ kη
B
.

Distributions of Ẽ(k̃) and E∗(k∗) are shown in figures 9(a) and 9(b) respectively for
six values of t , between t = 10 and 60. Although the collapse may be considered as
reasonable for each type of normalization, the Kolmogorov scaled distributions for
k∗ � 0.2 (figure 9b) tend to collapse better than those of Ẽ(k̃) for k̃ � 10 (figure 9a).
(The improved collapse will be more easily discerned in § 6 in linear plots of k̃4Ẽ(k̃)
and k∗ 4E∗ (k∗)). The same amount of scatter appears at small k̃ or k∗ in the two types
of normalization and remains unchanged when the data are replotted (not shown
here) in the form of k̃Ẽ(k̃) vs. ln k̃ or k∗E∗(k∗) vs. ln k∗. Scaling on Kolmogorov
variables is not expected to apply at small wavenumbers and the present spectra
conform with this expectation. That the collapse based on Kolmogorov variables
appears to extend over a substantial range of k∗ is probably due to the present small
values of Rλ.

Distributions of the products k̃ T̃ (k̃) and k∗ T ∗ (k∗) are plotted against ln k̃ and ln
k∗ in figures 10(a) and 10(b) respectively. For wavenumbers beyond the peaks in these
distributions, there is better collapse for k∗ T ∗ (k∗) (figure 10b) than k̃ T̃ (k̃) (figure 10a).
In the latter case, there is a systematic decrease in the magnitude as t increases (as
indicated by the arrow in figure 10a). For wavenumbers on the left of the peak, the
collapse in figure 10(b) appears to be of comparable quality to that in figure 10(a).
Oscillations on the left of the peak can be observed in figures 10(a) and 10(b). Similar
wiggles are also noticeable in the energy spectra and are caused primarily by the
small statistical samples in low-k shells (A. Wray, private communication).

In figure 11(a), the collapse of the distributions of Ẽθ (k̃θ ) for Sc= 0.7 is imperfect
at both small and large wavenumbers. There is a crossover near k̃θ ≈ 3; at smaller
k̃θ , the magnitude tends to increase with time whereas the inverse occurs at larger
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Figure 9. Three-dimensional energy spectra normalized using (a) G92 and (b) Kolmogorov
variables. – – –, t = 10; - - -, 20; — - —, 30; — - - —, 40; - - - - - -, 50; — —, 60.

k̃θ . This effect, illustrated by the two arrows, is also observed at larger values of Sc.
By contrast, distributions of E

†
θ (k†) (figure 11b) collapse approximately for k† � 0.3.

This is also independent of Sc, although the collapse occurs at larger times as Sc
increases. For k† � 0.3 the effect of increasing t on E

†
θ (k

†) is comparable to that
observed in Ẽθ (k̃θ ). On the basis of figure 11 and virtually identical results at larger
values of Sc, we can claim that Batchelor normalization collapses the scalar spectra
adequately for wavenumbers approaching and exceeding k† = 1. Such a collapse is not
seen when G92 variables are used. These observations apply to the distributions of
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(a) G92 and (b) Kolmogorov variables. – – –, t = 10; - - -, 20; — - —, 30; — - - —, 40;
- - - - - -, 50; — —, 60.

k̃θ T̃ θ (k̃θ ) (figure 12a) and k† T †(k†) (figure 12b); only results for Sc= 3 are shown here
(figure 12) since distributions at other values of Sc are similar to those in figure 12.

The effect of Sc on the scalar spectra and transfer functions is more readily
appreciated from distributions of these quantities at a fixed (and sufficiently large)
t but for different values of Sc, plotted on the same figure. Figure 13 indicates
that, regardless of whether G92 (figure 13a) or Batchelor variables (figure 13b) are
used, there is no discernible effect of Sc on the spectra provided the wavenumber
is sufficiently large (k̃θ � 3 in figure 13(a) or k† � 0.3 in figure 13(b)). The results
for the transfer functions (figure 14) exhibit some differences relative to those in
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Figure 11. Three-dimensional scalar spectra for Sc = 0.7, normalized using (a) G92 and
(b) Batchelor variables. – – –, t = 10; - - -, 20; — - —, 30; — - - —, 40; - - - - - -, 50; — —, 60.

figure 12. For wavenumbers below either k̃θ ≈ 4 (figure 14a) or k† ≈ 0.6 (figure 14b),
it is difficult to detect an effect of Sc on k̃θ T̃ θ (k̃θ ) or k† T

†
θ (k†), because of the scatter.

For larger wavenumbers, there seems to be a systematic decrease in the magnitude of
those products as Sc increases. The effect, however, is more pronounced for k̃θ T̃ θ (k̃θ )
(figure 14a) than k† T

†
θ (k†) (figure 14b).

5. Calculation of energy and scalar transfer functions
The transfer functions T (k, t) and Tθ (k, t) are related to E(k, t) and Eθ (k, t) via (1)

and (2). The dependence of T̃ (k) or Ẽ(k) can be readily obtained after substituting
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Figure 12. Wavenumber–scalar transfer function product for Sc= 3, normalized using
(a) G92 and (b) Batchelor variables. – – –, t = 10; - - -, 20; — - —, 30; — - - —, 40; - - - - - -, 50;
——, 60.

(8) and (9) into (1) and making use of relations (3), (4) and (5). This relation was
written in G92 and is rewritten below (because of the different notation used here):

T̃ (k̃) = 2k̃2 Ẽ(k̃) − 5(m−1 + 2) Ẽ(k̃) − m−1Ẽ
′
(k̃) (12)

where the prime denotes differentiation with respect to k̃. As noted in G92, T̃ (k̃)
depends on the initial conditions via Ẽ(k̃) and the exponent m.

Substituting (10) and (11) into (2) and making use of the following power-law
relations:

〈θ2(t)〉 = Aθ (t − tθ0
)n, (13)
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〈εθ (t)〉 = −1

2

d〈θ2〉
dt

=
−n

2
Aθ (t − tθ0

)n−1, (14)

together with (7), it is relatively straightforward to obtain an expression for T̃ θ (k̃θ ) in
terms of Ẽθ (k̃θ ). The final expression may be written

T̃ θ (k̃θ ) = 2k̃2
θ Ẽθ (k̃θ ) − 3(n−1 + 1) Ẽθ (k̃θ ) − 3n−1 k̃θ Ẽ′

θ (k̃θ ), (15)

where the prime denotes differentiation with respect to k̃θ . This result differs slightly
from that given by George (1992b) because a different definition of λθ was used in
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malized using (a) G92 and (b) Batchelor variables. – – –, Sc= 0.7 (t = 40); - - -, 1(40); — - —,
3(40); — - - —, 7(50); - - - - - -, 15(60).

that paper. The dependence of T̃ θ (k̃θ ) on initial conditions reflects that of Ẽθ (k̃θ ) and
the exponent n.

Note that as Sc does not appear explicitly in (15), any dependence of T̃ θ (k̃θ ) on
Sc should only reflect a possible dependence on Sc of Ẽθ (k̃θ ) and n. A comparison
between directly computed distributions of T̃ (k̃) and T̃ θ (k̃θ ) and those calculated
using (12) and (15) is given in figures 15(a) and 16(a) respectively. In each case, the
agreement is good over nearly the complete wavenumber range. In particular, the
agreement for T̃ (k̃) (figure 15a) is of comparable quality to that reported by George
& Wang (2002) for the DNS data of Wray. In figures 15 and 16, the distributions are
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Figure 15. Comparison between DNS and calculated distributions of the energy transfer
function, normalized using (a) G92 and (b) Kolmogorov variables. – – –, DNS; —, calculation
based on (12), in (a), and (A 1) in (b); - - -, calculation based on the approximation T (k, t) ≈
2νk2E(k, t).

at t =40 but comparable agreement between the data and the calculations was also
found at t =50 and 60. Only distributions for Sc= 1 are shown in figure 16 since a
similar level of agreement was found for other values of Sc.

Calculated distributions of T ∗(k∗) and T
†
θ (k†) were also determined by assuming

a possible similarity using either Kolmogorov or Batchelor variables. Resulting
expressions for these calculations are given in the Appendix. Figure 15(b) indicates
that the calculation overestimates the DNS T ∗(k∗) data for k∗ � 0.5. On the other
hand, the calculated distribution of T

†
θ (k†) lies below the DNS data for k† � 0.7
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function, normalised using (a) G92 and (b) Batchelor variables. Sc= 1. – – –, DNS; —,
calculation. In (a), the calculation is based on (15); in (b), it is based on (A 2).

(figure 16b). The discrepancy between calculated and DNS data in figures 15(b)
and 16(b) is not surprising since the Kolmogorov and Batchelor normalizations are
expected to be relevant only for sufficiently small scales. It is appropriate to underline
that, although Kolmogorov and Batchelor normalized distributions of E(k, t) and
Eθ (k, t), e.g. figures 9–11, indicate a better collapse than for G92, there is no rigorous
basis for either Kolmogorov or Batchelor similarity at all scales.

George & Wang (2002) noted that the universal equilibrium range idea of
Kolmogorov (1941) whereby ∂E/∂t can be neglected when k is sufficiently large,
did not apply even at the highest Reynolds numbers available. We similarly note here
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that the calculation of the transfer term based on the approximation

T (k, t) ≈ 2νk2 E(k, t)

is inadequate except at large wavenumbers (figures 15a and 15b). For the present
small Reynolds numbers, the neglect of ∂E/∂t is only justifiable at the smallest
dissipative scales (k̃ � 15 in figure 15(a) or k∗ � 1 in figure 15(b)). This seems to be
in contrast to the present observation, as well as that inferred from previous HIT
simulations (e.g. Mansour & Wray 1994) – also for small Reynolds numbers – that
the distributions of E(k, t) and T (k, t) collapse adequately, at sufficiently large k,
when scaled on Kolmogorov variables.

6. Further assessment of consequences of G92
Ideally, the DNS database should be adequately resolved both at the lowest and

largest wavenumbers in order to be able to test any similarity proposal adequately.
In the context of HIT, Wang & George (2002) indicated that the absence of scales an
order of magnitude below the peak in the energy spectrum can affect the determination
of the energy and more especially the integral length scale L. The shift of the energy
peak towards lower wavenumbers as the flow decays exacerbates this difficulty.
These authors also indicated that all values of L obtained from both numerical and
experimental data (in the latter case, L is usually the three-dimensional integral length
scale) are questionable. In particular, the ratio L/λ is not constant, as required by
G92, but decreases during decay. The present values of L/λ (figure 17) are consistent
with this trend as are the data of Wray and those we have obtained, also using a
finite-difference method, for a 2703 grid. Wang & George (2002) used a spectral model
to correct the results of Wray (1998). After correction, L/λ (figure 8(a) of their paper)
decayed much more slowly over the similarity range than the uncorrected ratio. The
integral length scales L and Lθ are defined by

L =
π

2〈q2〉

∫ ∞

0

E(k)

k
dk, Lθ =

π

2〈θ2〉

∫ ∞

0

Eθ (k)

k
dk.
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For the present simulations, the integrands have not yet started to return to zero at
the smallest k, thus indicating that the largest scales are not adequately resolved. This
lack of resolution is accentuated when t increases and is reflected in the distributions
of L/λ and also Lθ/λθ (not shown here).

The present 2703 DNS data has at t =60 approximately the same value of Rλ(≈ 60)
as that of Wray (Rλ ≈ 58.4 at t = 5.72). Despite this, the present value of m(≈ −1.12)
as inferred in figure 4 is, over the range 20 � t �60, comparable to that (≈ −1.13) we
estimate from Wray’s (1998) data. Wang & George (2002) used results from a slightly
different simulation by Wray which was meant to mimic the Comte-Bellot & Corrsin
(1971) experiment, starting from the same initial spectrum as for the AGARD run
but using a different time advance and different dealiasing. They obtained a value of
−1.5 for m, in the range 5 � t � 6.

Figure 18 shows that the magnitude of S ≡ 〈(∂u/∂x)3〉/〈(∂u/∂x)2〉3/2, the skewness
of the velocity derivative, attained a constant value (≈0.55) for t � 20. This trend,
also evident in Wray’s data as well as the present 2703 data, implies that the product
SRλ, also shown in figure 18, must decrease with t over at least part of the power-law
region. Note that the time evolutions for Wray and the present 2703 simulation are
similar, both exhibiting local minima and maxima before decaying at the largest
values of t .

The non-constancy of SRλ is of concern since it violates an important consequence
of G92. It is therefore important to assess the accuracy with which this product and,
in particular S, has been estimated. In figure 18, S was estimated via the relation (e.g.
Kerr 1985; G92)

S (t) = −3(30)1/2

14

∫ ∞
0

k2T (k, t) dk[ ∫ ∞
0

k2E(k, t) dk
]3/2

. (16)

After multiplying (1) with k2 and integrating with respect to k, S can be written (as
in G92) as

S(t) = S1(t) + S2(t),



Similarity of decaying isotropic turbulence 143

60

40

20

0 10 20 30

k
4 E

(k
)

~
~

~

k
~

(a)

t

0.3

0.2

0.1

0 1 2 3

k*4
E

* (
k* )

k*

(b)
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The arrow in (a) is in the direction of increasing t .

where

S1(t) = −301/2

14

∂/∂t

∫ ∞

0

k2E(k, t) dk

[∫ ∞

0

k2E(k, t) dk

]3/2
(17)

and

S2(t) = −3(30)1/2

14

ν

∫ ∞

0

k4E(k, t) dk

[∫ ∞

0

k2E(k, t) dk

]3/2
. (18)

Expression (17) can be simplified to

S1(t) =
30

7Rλ

m − 1

m
. (19)
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Figure 20. Distributions of (a) k̃4Ẽ(k̃) and (b) k∗4E∗(k∗). Comparison with Wray (1998).
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The magnitude of S2(t) should be unaffected regardless of the scaling that is used.
With G92, (18) can be written as

S2(t) = −3(30)1/2

14Rλ

∫ ∞

0

k̃4Ẽ(k̃) dk̃

[∫ ∞

0

k̃2Ẽ(k̃) dk̃

]3/2
. (20)

Using the Kolmogorov normalization, (18) is given by

S2(t) = −3(30)1/2

14

∫ ∞

0

k∗4 E∗(k∗) dk∗

[∫ ∞

0

k∗2E∗(k∗) dk∗
]3/2

. (21)

Although S1(t) is of opposite sign to S2(t), its magnitude is quite small compared to
that of S2(t). For the present 2403 simulation, S1(t) increases from 0.009 at t = 20
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to 0.01 at t = 60. Given that Rλ varies with t , comparing (20) with (21) suggests
that the validity of G92 precludes Kolmogorov similarity for the small-scales and
vice versa. The appearance of k4 in the numerator of (18) does, however, mean that
it is important to ensure adequate closure of this integrand before any conclusion
concerning the behaviour of S(t) can be reached.

In figure 19, we plot k̃4Ẽ(k̃) and k∗4E∗(k∗) for the present 2403 simulation and
values of t in the range 10 to 60. Whilst the distributions at t = 10 do not close, all
other distributions return to zero satisfactorily. Figure 1 indicates that the small-scale
resolution improves as t increases, the largest value of k∗ increasing from about 2.2
at t = 20 to about 4.2 at t = 60. The distributions of k̃4Ẽ(k̃) (figure 19a) evolve with
time in the direction of the arrow so that the integral decreases with t , allowing for
the partial compensatory effect associated with the integral in the denominator of
(20). This decrease is insufficient to offset the decrease in Rλ so that S2(t) becomes
constant at sufficiently large t . The excellent collapse in figure 19(b) confirms our
earlier conclusion, based on figures 11(b) and 12(b), that Kolmogorov normalization
describes the small-scale motion more accurately than G92. The conclusion regarding
the constancy of S(t) at sufficiently large t would be more difficult to sustain as
the Reynolds number of the simulation, and therefore the local value of Rλ, is
increased. For example, figure 20 indicates that even a mild increase in Rλ impairs our
ability to close the distribution of k4E(k, t). For the 2703 simulation, the distribution
at t = 60 has not quite returned to zero at k∗ ≈ 2. Wray’s (1998) distribution at
t = 3.6 is inadequately resolved, the energy pile-up at the largest k̃ or k∗ reflecting
the dealiasing due to the spectral cutoff in the pseudospectral method. Comparison
between figures 20(a) and 20(b) highlights the greater sensitivity on Rλ of E(k̃), relative
to E∗(k∗).

The mixed velocity–scalar derivative skewness

Sθ = 〈(∂u/∂x)(∂θ/∂x)2〉/
(
〈(∂u/∂x)2〉1/2〈(∂θ/∂x)2〉

)
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can be deduced from the spectral expression

Sθ (t) = − 2

151/2

∫ ∞

0

k2Tθ (k, t) dk

[∫ ∞

0

k2E(k, t) dk

]1/2 [∫ ∞

0

k2Eθ (k, t) dk

] .

The resulting distributions of Sθ (t) (figure 21) indicate an approach toward a constant,
at least when Sc is not significantly larger than 1. For Sc= 0.7 and 1, constancy is
achieved for t � 20, the magnitude of the constant being approximately equal to that
of S(t) (the latter distribution is included in the figure). For Sc= 3, Sθ (t) becomes
constant only after t = 50. For Sc=7 and, more especially Sc= 15, the magnitude of
Sθ (t) continues to increase at a significant rate at the largest t . Although there is a
continuous improvement in terms of resolving the smallest scalar scales as t increases,
it is clear that the task of closing the integrand in the numerator of (18) becomes
increasingly daunting as Sc increases. It is easy to show that the major contribution
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to
∫ ∞

0
k2Tθ (k, t) dk comes from

∫ ∞
0

k4Eθ (k, t) dk. As for S(t), Sθ (t) can be regarded as
receiving contributions from two terms, namely

Sθ (t) = Sθ1
(t) + Sθ2

(t),

with

Sθ1
(t) = − 2

15

∂/∂t

∫ ∞

0

k2Eθ (k, t) dk

[∫ ∞

0

k2E(k, t) dk

]1/2 [∫ ∞

0

k2Eθ (k, t) dk

]

and

Sθ2
(t) = − 4

15
νθ

∫ ∞

0

k4Eθ (k, t) dk

[∫ ∞

0

k2E(k, t) dk

]1/2 [∫ ∞

0

k2Eθ (k, t) dk

] .



148 R. A. Antonia and P. Orlandi

Sθ1
(t) can be rewritten, after some algebra, as

Sθ1
(t) = − 4

15

(
10

3

)1/2
m − 1

n
R−1

λ

For our 2403 simulation, the magnitude of Sθ1
(t) is about 0.02 at t = 60 (this applies

over the range 0.7 � Sc � 7). This is negligible in comparison to the values of Sθ (t)
in figure 21. For Sc= 1 (figure 22), the G92 distributions (figure 22a) show the
same evolution with t as those in figure 20(a). By contrast, if the data at t = 10
are discarded, the Batchelor-normalized distributions in figure 22(b) collapse well,
implying that constancy with respect to t of Sθ (t) is consistent with Batchelor-
similarity for small scalar scales but not with G92. For t > 20, the closure of the
distributions in figure 22 is satisfactory so that the result Sθ (t) = const cannot be
in question. For Sc= 7 (figure 23a) and 15 (figure 23b), it would be of interest to
extrapolate the integrand k†4E

†
θ (k†) to values of k† as large as 3; the Kraichnan

(1968) model, which has been shown to be relevant at large k† (e.g. Bogucki et al.
1997; Niewstadt & Brethouwer 2000; Antonia & Orlandi 2003b), could be used for
this purpose.

7. Concluding comments
Overall, the present DNS data provide only qualified support for the equilibrium

similarity, as outlined in G92. Perhaps the strongest support for G92 is reflected
in the way the calculations of the transfer functions, based on G92, reproduce the
DNS distributions for T (k) and Tθ (k). There seems little doubt, however, that over
a range of t which complies with G92, the energy spectra and transfer functions
collapse better on Kolmogorov variables than with G92. Similarly, scalar spectra
and transfer functions collapse better on Batchelor variables than with G92. The
improved collapse is best observed at high wavenumbers, e.g. the linear–linear plots
of figures 19 and 22 where high wavenumbers are emphasized. As a consequence of
this, the skewness S and mixed skewness Sθ approach constant values at large t and
the products SRλ and SθRλ are not constant, as required by G92. Unlike previous
DNS data, the present 2403 simulation adequately captures the smallest dissipative
scales of motion as illustrated by the closure of the distributions in figures 19 and
22, thus permitting estimations of S and Sθ although, in the latter case, this has
only been possible for Sc � 3. Assuming that the framework of similarity is valid,
the scaling variables identified in G92 satisfy (1) and (2) rigorously. The apparent
failure of the data to verify G92 at all scales of motion raises some concern. A
possible inference from this is that the concept of equilibrium similarity is perhaps
too rigorous in that it requires similarity to be continuously maintained between all
scales of motion; this requirement may be unrealistic when, for example, the non-
stationary terms in (1) and (2) become negligible and the local spectral balance at
high enough wavenumbers is primarily dictated by the transfer and dissipative terms.
There is no question that the concept is tenable in an asymptotic sense, when m

is −1 and Rλ is constant. In this case, G92 is, as originally pointed out by George
(1992a), fully consistent with Kolmogorov scaling. Another possibility is that there
are sufficient shortcomings in both numerical and experimental data to prevent G92
from being tested properly. This should provide numericists and experimenters with
sufficient incentive to continue to improve simulations and experimental realizations
of decaying homogeneous isotropic turbulence.
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Appendix
In this appendix, empirical expressions for the energy and scalar transfer functions

are calculated by assuming similarity based either on Kolmogorov or Batchelor
variables. We also assume power-law decay rates, as given by (3) and (13). The
primary motivation here is to exploit the good collapse exhibited in figures 9(b),
10(b), 11(b) and 12(b), notwithstanding the knowledge that this type of similarity does
not apply at small k. The present approach differs somewhat from that in Helland
et al. (1977) where an empirical form for E(k) was used to allow the calculation of
T (k) to be extrapolated to relatively large Rλ. Here, the calculation is based on DNS
distributions of E∗(k∗).
(a) Kolmogorov similarity

We postulate that

E(k, t) = U 2
κ ηE∗(k∗), (A 1)

T (k, t) =
(
νU 2

κ /η
)
T ∗(k∗). (A 2)

The scale (νU 2
κ /η) in (A2) can be replaced by U 3

κ since Uκη/ν ≡ 1.
Substituting the above expressions into (1) and making use of the power-law

relations (3) and (4), we obtain, after some algebra,

T ∗ = 2k∗2

E∗(k∗) +
(n − 1)

4
t∗−1

[E∗(k∗) − k∗E∗′ (k∗)], (A 3)

where the prime denotes differentiation with respect to k∗. The appearance of
t∗ ≡ (t〈ε〉1/2/ν1/2) in (A3) is incompatible with the assumption that E∗ and T ∗ depend
only on k∗. This discrepancy arises from the arbitrary choice of the scales in (A1)
and (A2). These scales are, however, consistent with a t−1 decay of 〈q2(t)〉 and with
Rλ =constant.
(b) Batchelor similarity

Here we assume that

Eθ (k, t) = θ2
BηBE

†
θ (k

†),

Tθ (k, t) = θ2
BηB γ T

†
θ (k†).

The above expressions are substituted into (2) and use is made of the power-law
relations for (3), (4), (13), (14). After some algebra, the final result is

T
†
θ (k†) =

(
2k†2

+

(
m − 3n

4
− 1

4

)
t∗−1

)
E

†
θ (k

†) − (n − 1)t∗−1

k† E
†′

θ (k†), (A 4)

where the prime here denotes differentiation with k†. Note that unlike (15), (A 4)
contains a dependence on both m and n.
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